2023-2024_01_03_01_2023_633_plx_Функциональный анализ_Прикладная математика и программирование
 
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение высшего образования «Горно-Алтайский государственный университет»

(ФГБОУ ВО ГАГУ, ГАГУ, Горно-Алтайский государственный университет) 

 
кафедра математики, физики и информатики
Закреплена за кафедрой
рабочая программа дисциплины (модуля)
Функциональный анализ
Учебный план
01.03.01_2023_633.plx

01.03.01 Математика

Прикладная математика и программирование
 
экзамены 5
Виды контроля  в семестрах:
часов на контроль
34,75
самостоятельная работа
35,1
аудиторные занятия
36
Общая трудоемкость
Часов по учебному плану
3 ЗЕТ
Форма обучения
очная
Квалификация
бакалавр
108
в том числе:
 
Распределение часов дисциплины по семестрам
Семестр

(<Курс>.<Семестр на курсе>)

5 (3.1)
Итого
Недель
16 2/6
Вид занятий
УП
РП
УП
РП
Лекции
18
18
18
18
Практические
18
18
18
18
Консультации (для студента)
0,9
0,9
0,9
0,9
Контроль самостоятельной работы при проведении аттестации
0,25
0,25
0,25
0,25
Консультации перед экзаменом
1
1
1
1
Итого ауд.
36
36
36
36
Кoнтактная рабoта
38,15
38,15
38,15
38,15
Сам. работа
35,1
35,1
35,1
35,1
Часы на контроль
34,75
34,75
34,75
34,75
Итого
108
108
108
108
 
 
УП: 01.03.01_2023_633.plx
стр. 2
 
Программу составил(и):
к.ф.-м.н., доцент, Давыдкин И.Б. _______________
 
 
Функциональный анализ
Рабочая программа дисциплины
 
разработана в соответствии с ФГОС:
Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 01.03.01 Математика (приказ Минобрнауки России от 10.01.2018 г. № 8)
 
01.03.01 Математика
составлена на основании учебного плана:
 
утвержденного учёным советом вуза от 26.12.2022 протокол № 12.
 
Протокол от 09.03.2023 протокол № 8  

Зав. кафедрой Богданова Рада Александровна

кафедра математики, физики и информатики
Рабочая программа утверждена на заседании кафедры
 
УП: 01.03.01_2023_633.plx
стр. 3
 
Протокол от  __ __________ 2027 г.  №  __  

Зав. кафедрой Богданова Рада Александровна

кафедра математики, физики и информатики
Рабочая программа пересмотрена, обсуждена и одобрена для

исполнения в 2027-2028 учебном году на заседании кафедры

 
 
Визирование РПД для исполнения в очередном учебном году
Протокол от  __ __________ 2026 г.  №  __  

Зав. кафедрой Богданова Рада Александровна

кафедра математики, физики и информатики
Рабочая программа пересмотрена, обсуждена и одобрена для

исполнения в 2026-2027 учебном году на заседании кафедры

 
 
Визирование РПД для исполнения в очередном учебном году
Протокол от  __ __________ 2025 г.  №  __  

Зав. кафедрой Богданова Рада Александровна

кафедра математики, физики и информатики
Рабочая программа пересмотрена, обсуждена и одобрена для

исполнения в 2025-2026 учебном году на заседании кафедры

 
 
Визирование РПД для исполнения в очередном учебном году
Протокол от  __ __________ 2024 г.  №  __  

Зав. кафедрой Богданова Рада Александровна

кафедра математики, физики и информатики
Рабочая программа пересмотрена, обсуждена и одобрена для

исполнения в 2024-2025 учебном году на заседании кафедры

Визирование РПД для исполнения в очередном учебном году
 
 
 
стр. 4
УП: 01.03.01_2023_633.plx
 
1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
1.1
Цели: формирование математической культуры студентов, фундаментальная подготовка студентов в области функционального анализа, овладение современным аппаратом функционального анализа для дальнейшего использования в других областях математического знания и дисциплинах естественнонаучного содержания.
1.2
Задачи: - развитие общей математической культуры; - совершенствование навыков математического и логического мышления.
 
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП
Цикл (раздел) ООП:
 
2.1
Требования к предварительной подготовке обучающегося:
2.1.1
Комплексный анализ
2.1.2
Математический анализ
 
 
2.2
Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:
2.2.1
Уравнения с частными производными
 
3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)
 
 
УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
 
Анализирует задачу, выделяя ее базовые составляющие, осуществляет декомпозицию задачи в функциональном анализе
ИД-1.УК-1: Анализирует задачу, выделяя ее базовые составляющие, осуществляет декомпозицию задачи
 
Находит и критически анализирует информацию, необходимую для решения поставленной задачи в области функционального анализа
ИД-2.УК-1: Находит и критически анализирует информацию, необходимую для решения поставленной задачи
 
Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки в области функционального анализа
ИД-3.УК-1: Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки
 
Грамотно, логично, аргументированно формирует собственные суждения и оценки в области функционального анализа
ИД-4.УК-1: Грамотно, логично, аргументированно формирует собственные суждения и оценки. Отличает факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников деятельности
 
 
ОПК-1: Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности
 
Знает основные понятия, определения, свойства математических объектов, формулировки и методы доказательств математических утверждений в области функционального анализа
ИД-1.ОПК-1: Знает основные понятия, определения, свойства математических объектов, формулировки и методы доказательств математических утверждений
 
Умеет доказывать утверждения, решать задачи в области математических наук в области функционального анализа
ИД-2.ОПК-1: Умеет доказывать утверждения, решать задачи в области математических наук
 
 
 
 
 
 
 
Наименование разделов и тем /вид занятия/
Литература
Часов
Компетен-

ции

Семестр / Курс
Код занятия
Инте

ракт.

Примечание
4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
 
 
Раздел 1. Линейные, нормированные и банаховые пространства
 
стр. 5
УП: 01.03.01_2023_633.plx
 
1.1
Линейные, нормированные пространства. Пространства со скалярным произведением. /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
1.2
Линейные, нормированные пространства /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
1.3
Банаховые пространства /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
1.4
Банаховые пространства /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
1.5
Домашнее задание

Подготовка к коллоквиуму

Решение контрольной работы

Написание реферата

/Ср/

4
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
 
Раздел 2. Линейные операторы
 
2.1
Линейные операторы /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
2
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
2.2
Линейные операторы /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
2
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
2.3
Обратные операторы /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
2
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
2.4
Обратные операторы /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
2
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
стр. 6
УП: 01.03.01_2023_633.plx
 
2.5
Домашнее задание

Подготовка к коллоквиуму

Решение контрольной работы

Написание реферата

/Ср/

4
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
 
Раздел 3. Сопряженные пространства и операторы
 
3.1
Теорема Хана - Банаха /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
2
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
3.2
Непрерывные линейные функционалы /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
2
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
3.3
Сопряженные и самосопряженные операторы /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
3.4
Сопряженные операторы /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
3.5
Домашнее задание

Подготовка к коллоквиуму

Решение контрольной работы

Написание реферата

/Ср/

4
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
 
Раздел 4. Компактные множества и вполне непрерывные операторы
 
4.1
Компактные множества в нормированных пространствах /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
4.2
Компактные множества в нормированных пространствах /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
стр. 7
УП: 01.03.01_2023_633.plx
 
4.3
Линейные вполне непрерывные операторы /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
4.4
Линейные вполне непрерывные операторы /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
4.5
Домашнее задание

Подготовка к коллоквиуму

Решение контрольной работы

Написание реферата

/Ср/

4
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
 
Раздел 5. Элементы спектральной теории линейных операторов
 
5.1
Собственные значения и собственные векторы линейных операторов /Лек/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
5.2
Линейные интегральные уравнения /Пр/
2
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
5.3
Домашнее задание

Подготовка к коллоквиуму

Решение контрольной работы

Написание реферата

/Ср/

19,1
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3
 
 
Раздел 6. Консультации
 
6.1
Консультация по дисциплине /Kонс/
0,9
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
 
 
Раздел 7. Промежуточная аттестация (экзамен)
 
7.1
Подготовка к экзамену /Экзамен/
34,75
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
 
стр. 8
УП: 01.03.01_2023_633.plx
 
7.2
Контроль СР /KСРАтт/
0,25
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
 
7.3
Контактная работа /KонсЭк/
1
ИД-1.УК-1 ИД-2.УК-1 ИД-3.УК-1 ИД-4.УК-1 ИД-1.ОПК-1 ИД-2.ОПК-1
5
0
 
5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
 
5.1. Пояснительная записка
1. Назначение фонда оценочных средств. Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины.

2. Фонд оценочных средств включает контрольные материалы для проведения входного контроля,  текущего контроля 1 и 2  в форме  вопросов, заданий, а также примерный перечень вопросов для проведения промежуточной аттестации в форме экзамена.  

 
5.2. Оценочные средства для текущего контроля
Примерный комплект теста "Входной контроль"

1. Функция называется монотонно возрастающей, если при х > 0:

a. приращение функции y = 0;

b. приращение функции y > 0;

c. приращение функции y   0;

d. приращение функции y   0;

e. приращение функции y < 0.

2. Функция называется монотонно убывающей, если при х > 0:

a. приращение функции y = 0;

b. приращение функции y > 0;

c. приращение функции y   0;

d. приращение функции y   0;

e. приращение функции y < 0.

3. Функция имеет в точке а максимум, если первая производная в этой точке:

a. меняет знак с плюса на минус;

b. меняет знак с минуса на плюс;

c. остается постоянной;

d. стремится к бесконечности;

e. не меняет знак.

4. Функция имеет в точке а минимум, если первая производная в этой точке:

a. меняет знак с плюса на минус;

b. остается постоянной;

c. стремится к бесконечности;

d. меняет знак с минуса на плюс;

e. не меняет знак.

5. Сложной функцией называется:

a. функция, представляющая собой сумму или разность нескольких функций;

b. если она является логарифмом х;

c. если она равняется синусу х;

d. функция, аргументом которой является другая функция;

e. функция, представляющая собой произведение нескольких функций.

6. Производной функции y = f(x) называется:

a. предел отношения значения функции к значению аргумента при стремлении аргумента к нулю;

b. отношение значения функции к значению аргумента;

c. отношение приращения функции к приращению аргумента;

d. предел отношения значения функции к значению аргумента при стремлении значения аргумента к константе;

e. предел отношения приращения функции к приращению аргумента при стремлении приращения аргумента к нулю.

7. Частной производной функции нескольких переменных называется:

a. производная от частного аргументов функции;

b. производная от произведения аргументов функции;

 
стр. 9
УП: 01.03.01_2023_633.plx
 
c. производная от логарифма частного аргументов функции;

d. производная от функции при условии, что все аргументы кроме одного остаются постоянными;

e. производная от функции при условии, что все аргументы остаются постоянными.

8. Производная функции определяет:

a. изменение функции при заданном изменении аргумента;

b. изменение аргумента при заданном изменении функции;

c. изменение аргумента при заданном значении функции;

d. изменение функции при заданном значении аргумента;

e. скорость изменение функции при изменении аргумента.

9. Дифференциал функции – это:

a. полное приращение функции при заданном изменении аргумента;

b. квадрат приращения функции при заданном изменении аргумента;

c. квадратный корень из приращения функции при заданном изменении аргумента;

d. главная линейная часть приращения функции при заданном изменении аргумента;

e. изменение функции при заданном изменении аргумента.

10. Производной второго порядка называется:

a. квадрат производной первого порядка;

b. производная от производной первого порядка;

c. корень квадратный от производной первого порядка;

d. первообразная функции;

e. первообразная производной первого порядка.

11. Полным дифференциалом функции нескольких переменных называется:

a. главная линейная часть приращения функции при изменении одного из аргументов;

b. главная линейная часть приращения функции при изменении логарифма одного из аргументов;

c. квадрат приращения функции при изменении всех аргументов;

d. главная линейная часть приращения функции при изменении всех аргументов;

e. приращения функции при изменении всех аргументов.

12. Первообразной функции y = f(x) называется:

a. функция, производная которой равна заданной функции (функции y = f(x));

b. функция, равная сумме y = f(x) + С, где С – произвольная константа;

c. функция, равная 2 f(x+С), где С – произвольная константа;

d. С f(x), где С – произвольная константа;

e. функция, равная 2 f(x).

13. Каждая функция y = f(x) имеет:

a. одну первообразную функцию;

b. ровно 2 первообразных функций;

c. ни одной первообразной функции;

d. несколько первообразных функций;

e. множество первообразных функций.

14. Неопределенным интегралом функции y = f(x) называется:

a. первообразная функции y = f(x);

b. квадрат первообразной функции y = f(x);

c. сумма всех первообразных функции y = f(x);

d. совокупность всех первообразных функции y = f(x);

e. произведение всех первообразных функции y = f(x).

15. Метод интегрирования по частям применим при интегрировании:

a. суммы или разности нескольких функций;

b. сложной функции;

c. линейной комбинации функций;

d. произведения функций;

e. любой комбинации любых функций.

16. Метод замены переменных применим при интегрировании:

a. суммы или разности нескольких функций;

b. произведения функций;

c. линейной комбинации функций;

d. сложных функций;

e. любой комбинации любых функций.

Критерии оценки

«Зачтено» – выполнение верно более 60% заданий.

«Не зачтено» – выполнение 60% и менее заданий верно.

Примерные вопросы "Текущий контроль 1"

1. Конечномерные и бесконечномерные линейные пространства.

2. Линейные и аффинные многообразия.

3. Нормированные пространства. Предел последовательности.

 
стр. 10
УП: 01.03.01_2023_633.plx
 
4. Открытые и замкнутые множества. Эквивалентность норм. Подпространство.

5. Лемма Рисса.

6. Евклидовые пространства. Ортогональность.

7. Процесс ортогонализации Шмидта. Свойства скалярного произведения.

8. Фундаментальная последовательность. Банахово пространство.

9. Ряды в нормированных и банаховых пространствах.  Принцип вложенных шаров.

10. Гильбертово пространство. Ортогональные дополнения.

11. Ряды Фурье. Неравенство Бесселя.

12. Теорема о пополнении. Пространство Лебега. Пространства Соболева.

13. Простейшая теорема вложения. Теорема вложения Соболева.

14. Линейный оператор. Ограниченный линейный оператор.

15. Нормированное пространство L(X,Y). Норма линейного оператора. Равномерная сходимость. Ряды в L(X,Y).

16. Сильная сходимость в L(X,Y). Принцип равномерной ограниченности. Продолжение линейного оператора по непрерывности.

17. Обратный оператор. N(A).

18. Левый и правый обратный оператор.

Критерии оценки

«Зачтено» – выполнение верно более 60% заданий.

«Не зачтено» – выполнение 60% и менее заданий верно.

Примерные вопросы "Текущий контроль 2"

19. Теорема Хана-Банаха.

20. Сопряженное пространство.

21. Теорема Рисса об общем виде линейного функционала в гильбертовом пространстве.

22. Рефлексивные пространства. Слабая сходимость в нормированных пространствах.

23. Сопряженные операторы. Самосопряженные операторы.

24. Неотрицательный оператор.

25. Бикомпактные множества. Компактные множества. Критерий компактности Хаусдорфа.

26. Компактность и конечномерность. Теорема Арцела.

27. Вполне непрерывные операторы. Теорема Шаудера.

28. Теория Рисса-Шаудера линейных уравнений 2-го рода.

29. Собственные значения и собственные векторы линейного оператора в конечномерном случае.

30. Собственные значения и собственные векторы линейного вполне непрерывного оператора и линейного вполне непрерывного самосопряженного оператора.

31. Резольвентное множество и спектр линейного оператора.

Критерии оценки

«Зачтено» – выполнение верно более 60% заданий.

«Не зачтено» – выполнение 60% и менее заданий верно.

 
5.3. Темы письменных работ (эссе, рефераты, курсовые работы и др.)
Не предусмотрены
 
5.4. Оценочные средства для промежуточной аттестации
Перечень вопросов к экзамену

1. Конечномерные и бесконечномерные линейные пространства.

2. Линейные и аффинные многообразия.

3. Нормированные пространства. Предел последовательности.

4. Открытые и замкнутые множества. Эквивалентность норм. Подпространство.

5. Лемма Рисса.

6. Евклидовые пространства. Ортогональность.

7. Процесс ортогонализации Шмидта. Свойства скалярного произведения.

8. Фундаментальная последовательность. Банахово пространство.

9. Ряды в нормированных и банаховых пространствах.  Принцип вложенных шаров.

10. Гильбертово пространство. Ортогональные дополнения.

11. Ряды Фурье. Неравенство Бесселя.

12. Теорема о пополнении. Пространство Лебега. Пространства Соболева.

13. Простейшая теорема вложения. Теорема вложения Соболева.

14. Линейный оператор. Ограниченный линейный оператор.

15. Нормированное пространство L(X,Y). Норма линейного оператора. Равномерная сходимость. Ряды в L(X,Y).

16. Сильная сходимость в L(X,Y). Принцип равномерной ограниченности. Продолжение линейного оператора по непрерывности.

17. Обратный оператор. N(A).

18. Левый и правый обратный оператор.

19. Теорема Хана-Банаха.

 
стр. 11
УП: 01.03.01_2023_633.plx
 
20. Сопряженное пространство.

21. Теорема Рисса об общем виде линейного функционала в гильбертовом пространстве.

22. Рефлексивные пространства. Слабая сходимость в нормированных пространствах.

23. Сопряженные операторы. Самосопряженные операторы.

24. Неотрицательный оператор.

25. Бикомпактные множества. Компактные множества. Критерий компактности Хаусдорфа.

26. Компактность и конечномерность. Теорема Арцела.

27. Вполне непрерывные операторы. Теорема Шаудера.

28. Теория Рисса-Шаудера линейных уравнений 2-го рода.

29. Собственные значения и собственные векторы линейного оператора в конечномерном случае.

30. Собственные значения и собственные векторы линейного вполне непрерывного оператора и линейного вполне непрерывного самосопряженного оператора.

31. Резольвентное множество и спектр линейного оператора.

Критерии оценки:

- оценка «отлично» выставляется студенту, если продемонстрировано глубокое и прочное усвоение материала, т.е. последовательно, грамотно и логически стройно изложены все три вопроса билета, что определяет повышенный уровень;  

- оценка «хорошо» выставляется студенту, если продемонстрировано достаточно полное усвоение материала, т.е. частично изложены первый и (или) второй вопросы билета и выполнено умение, что определяет пороговый уровень;  

- оценка «удовлетворительно» выставляется студенту, если продемонстрировано общее знание материала, т.е. частично изложен первый или второй вопрос и выполнено умение, что определяет пороговый уровень;

- оценка «неудовлетворительно» выставляется студенту, если продемонстрировано не знание материала, не владение понятийным аппаратом, т.е. отсутствует изложение вопросов билета, совокупность всего перечисленного определяет то, что уровень не сформирован.

 
6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
6.1. Рекомендуемая литература
 
6.1.1. Основная литература
 
Авторы, составители
Заглавие
Издательство, год
Эл. адрес
 
Л1.1
Асташова И.В.
Функциональный анализ: учебное пособие
Москва: Евразийский открытый институт, 2011
http://www.iprbookshop.ru/11120.html
 
Л1.2
Крепкогорский В.Л.
Функциональный анализ: учебное пособие
Казань: Казанский национальный исследовательский технологический университет, 2014
http://www.iprbookshop.ru/62016.html
 
Л1.3
Сухинов А.И., Фирсов И.П.
Лекции по функциональному анализу: учебное пособие
Ростов-на-Дону: Южный федеральный университет, 2009
http://www.iprbookshop.ru/46993.html
 
6.1.2. Дополнительная литература
 
Авторы, составители
Заглавие
Издательство, год
Эл. адрес
 
Л2.1
Рудин У., Горин Е.А., Лин В.Я.
Функциональный анализ: учебное пособие: [пер. с англ.]
Санкт-Петербург: Лань, 2005
 
Л2.2
Ревина С.В., Сазонов Л.И.
Функциональный анализ в примерах и задачах: учебное пособие
Ростов-на-Дону: Южный федеральный университет, 2009
http://www.iprbookshop.ru/47190.html
 
Л2.3
Осиленкер Б.П.
Задачи и упражнения по функциональному анализу: учебно-практическое пособие
Москва: Московский государственный строительный университет, ЭБС АСВ, 2015
http://www.iprbookshop.ru/60819.html
 
6.3.1 Перечень программного обеспечения
 
6.3.1.1
Google Chrome
6.3.1.2
Kaspersky Endpoint Security для бизнеса СТАНДАРТНЫЙ
6.3.1.3
MS Office
6.3.1.4
MS WINDOWS
 
стр. 12
УП: 01.03.01_2023_633.plx
 
6.3.1.5
Moodle
6.3.1.6
NVDA
 
6.3.2 Перечень информационных справочных систем
 
6.3.2.1
База данных «Электронная библиотека Горно-Алтайского государственного университета»
6.3.2.2
Электронно-библиотечная система IPRbooks
6.3.2.3
Межвузовская электронная библиотека 
 
7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ
 
лекция-визуализация
 
дискуссия
 
проблемная лекция
 
8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
Номер аудитории
Назначение
Основное оснащение
 
222 Б1
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации
Рабочее место преподавателя. Посадочные места обучающихся (по количеству обучающихся). Переносной проектор, ноутбук, экран
 
201 Б1
Кабинет методики преподавания информатики. Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Помещение для самостоятельной работы
Маркерная ученическая доска, экран, мультимедиапроектор. Рабочее место преподавателя. Посадочные места обучающихся (по количеству обучающихся), компьютеры с доступом к Интернет
 
207 Б1
Лекционная аудитория. Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации
Ученическая доска, проектор, экран, системный блок, посадочные места обучающихся (по количеству обучающихся), рабочее место преподавателя
 
9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)
Методические указания по освоению дисциплин (модулей)

Лекции, с одной стороны – это одна из основных форм учебных занятий в высших учебных заведениях, представляющая собой систематическое, последовательное устное изложение преподавателем определенного раздела конкретной науки или учебной дисциплины, с другой – это особая форма самостоятельной работы с учебным материалом. Лекция не заменяет собой книгу, она только подталкивает к ней, раскрывая тему, проблему, выделяя главное, существенное, на что следует обратить внимание, указывает пути, которым нужно следовать, добиваясь глубокого понимания поставленной проблемы, а не общей картины.

Работа на лекции – это сложный процесс, который включает в себя такие элементы как слушание, осмысление и собственно конспектирование. Для того, чтобы лекция выполнила свое назначение, важно подготовиться к ней и ее записи еще до прихода преподавателя в аудиторию. Без этого дальнейшее восприятие лекции становится сложным. Лекция в университете рассчитана на подготовленную аудиторию. Преподаватель излагает любой вопрос, ориентируясь на те знания, которые должны быть у студентов, усвоивших материал всех предыдущих лекций.Важно научиться слушать преподавателя во время лекции, поддерживать непрерывное внимание к выступающему.

Однако, одного слушания недостаточно. Необходимо фиксировать, записывать тот поток информации, который сообщается во время лекции – научиться вести конспект лекции, где формулировались бы наиболее важные моменты, основные положения, излагаемые лектором. Для ведения конспекта лекции следует использовать тетрадь. Ведение конспекта на листочках не рекомендуется, поскольку они не так удобны в использовании и часто теряются. При оформлении конспекта лекции необходимо оставлять поля, где студент может записать свои собственные мысли, возникающие параллельно с мыслями, высказанными лектором, а также вопросы, которые могут возникнуть в процессе слушания, чтобы получить на них ответы при самостоятельной проработке материала лекции, при изучении рекомендованной литературы или непосредственно у преподавателя в конце лекции. Составляя конспект лекции, следует оставлять значительный интервал 

 
стр. 13
УП: 01.03.01_2023_633.plx
 
между строчками. Это связано с тем, что иногда возникает необходимость вписать в первоначальный текст лекции одну или несколько строчек, имеющих принципиальное значение и почерпнутых из других источников. Расстояние между строками необходимо также для подчеркивания слов или целых групп слов (такое подчеркивание вызывается необходимостью привлечь внимание к данному месту в тексте при повторном чтении). Обычно подчеркивают определения, выводы.

Также важно полностью без всяких изменений вносить в тетрадь схемы, таблицы, чертежи и т.п., если они предполагаются в лекции. Для того, чтобы совместить механическую запись с почти дословным фиксированием наиболее важных положений, можно использовать системы условных сокращений. В первую очередь сокращаются длинные слова и те, что повторяются в речи лектора чаще всего. При этом само сокращение должно быть по возможности кратким.

Семинарские (практические) занятия Самостоятельная работа студентов по подготовке к семинарскому (практическому) занятию должна начинаться с ознакомления с планом семинарского (практического) занятия, который включает в себя вопросы, выносимые на обсуждение, рекомендации по подготовке к семинару (практическому занятию), рекомендуемую литературу к теме. Изучение материала следует начать с просмотра конспектов лекций. Восстановив в памяти материал, студент приводит в систему основные положения темы, вопросы темы, выделяя в ней главное и новое, на что обращалось внимание в лекции. Затем следует внимательно прочитать соответствующую главу учебника.

Для более углубленного изучения вопросов рекомендуется конспектирование основной и дополнительной литературы. Читая рекомендованную литературу, не стоит пассивно принимать к сведению все написанное, следует анализировать текст, думать над ним, этому способствуют записи по ходу чтения, которые превращают чтение в процесс. Записи могут вестись в различной форме: развернутых и простых планов, выписок (тезисов), аннотаций и конспектов.

Подобрав, отработав материал и усвоив его, студент должен начать непосредственную подготовку своего выступления на семинарском (практическом) занятии для чего следует продумать, как ответить на каждый вопрос темы.

По каждому вопросу плана занятий необходимо подготовиться к устному сообщению (5-10 мин.), быть готовым принять участие в обсуждении и дополнении докладов и сообщений (до 5 мин.).

Выступление на семинарском (практическом) занятии должно удовлетворять следующим требованиям: в нем излагаются теоретические подходы к рассматриваемому вопросу, дается анализ принципов, законов, понятий и категорий; теоретические положения подкрепляются фактами, примерами, выступление должно быть аргументированным.

Лабораторные работы являются основными видами учебных занятий, направленными на экспериментальное (практическое) подтверждение теоретических положений и формирование общепрофессиональных и профессиональных компетенций. Они составляют важную часть теоретической и профессиональной практической подготовки.

В процессе лабораторной работы как вида учебного занятия студенты выполняют одно или несколько заданий  под руководством преподавателя в соответствии с изучаемым содержанием учебного материала.  

При выполнении обучающимися лабораторных работ значимым компонентом становятся практические задания с использованием компьютерной техники, лабораторно - приборного оборудования и др. Выполнение студентами лабораторных работ проводится с целью: формирования умений, практического опыта (в соответствии с требованиями к результатам освоения дисциплины, и на основании перечня формируемых компетенций, установленными рабочей программой дисциплины), обобщения, систематизации, углубления, закрепления полученных теоретических знаний, совершенствования умений применять полученные знания на практике.

Состав заданий для лабораторной работы должен быть спланирован с расчетом, чтобы за отведенное время они могли быть выполнены качественно большинством студентов.

При планировании лабораторных работ следует учитывать, что в ходе выполнения заданий у студентов формируются умения и практический опыт работы с различными приборами, установками, лабораторным оборудованием, аппаратурой, программами и др., которые могут составлять часть профессиональной практической подготовки, а также исследовательские умения (наблюдать, сравнивать, анализировать, устанавливать зависимости, делать выводы и обобщения, самостоятельно вести исследование, оформлять результаты).

Выполнению лабораторных работ предшествует проверка знаний студентов - их теоретической готовности к выполнению задания.

Формы организации студентов при проведении лабораторных работ: фронтальная, групповая и индивидуальная. При фронтальной форме организации занятий все студенты выполняют одновременно одну и ту же работу. При групповой форме организации занятий одна и та же работа выполняется группами по 2 - 5 человек. При индивидуальной форме организации занятий каждый студент выполняет индивидуальное задание.  

Текущий контроль учебных достижений по результатам выполнения лабораторных работ проводится в соответствии с системой оценивания (рейтинговой, накопительной и др.), а также формами и методами (как традиционными, так и инновационными, включая компьютерные технологии), указанными в рабочей программе дисциплины (модуля). Текущий контроль проводится в пределах учебного времени, отведенного рабочим учебным планом на освоение дисциплины, результаты заносятся в журнал учебных занятий.

Объем времени, отводимый на выполнение лабораторных работ, планируется в соответствии с учебным планом ОПОП.

Перечень лабораторных работ в РПД, а также количество часов на их проведение должны обеспечивать реализацию требований к знаниям, умениям и практическому опыту студента по дисциплине (модулю) соответствующей ОПОП.

Самостоятельная работа обучающихся– это планируемая учебная, учебно-исследовательская, научно-исследовательская  работа, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Объем самостоятельной работы определяется учебным планом основной профессиональной образовательнойпрограммы (ОПОП), рабочей программой дисциплины (модуля).

Самостоятельная работа организуется и проводится с целью формирования компетенций, понимаемых как способность применять знания, умения и личностные качества для успешной практической деятельности, в том числе:

- формирования умений по поиску и использованию нормативной, правовой, справочной и специальной литературы, а также других источников информации;

- качественного освоения и систематизации полученных теоретических знаний, их углубления и расширения по 

 
стр. 14
УП: 01.03.01_2023_633.plx
 
применению на уровне межпредметных связей;

- формирования умения применять полученные знания на практике (в профессиональной деятельности) и закрепления практических умений обучающихся;

- развития познавательных способностей, формирования самостоятельности мышления обучающихся;

- совершенствования речевых способностей обучающихся;

- формирования необходимого уровня мотивации обучающихся к систематической работе для получения знаний, умений и владений в период учебного семестра, активности обучающихся, творческой инициативы, самостоятельности, ответственности и организованности;

- формирования способностей к саморазвитию (самопознанию, самоопределению, самообразованию, самосовершенствованию, самореализации и саморегуляции);

- развития научно-исследовательских навыков;

- развития навыков межличностных отношений.

К самостоятельной работе по дисциплине (модулю) относятся: проработка теоретического материала дисциплины (модуля);подготовка к семинарским и практическим занятиям, в т.ч. подготовка к текущему контролю успеваемости обучающихся(текущая аттестация); подготовка к лабораторным работам; подготовка к промежуточной аттестации (зачётам, экзаменам).

Виды, формы и объемы самостоятельной работы обучающихсяпри изучении дисциплины (модуля) определяются:

- содержанием компетенций, формируемых дисциплиной (модулем);

- спецификой дисциплины (модуля), применяемыми образовательными технологиями;

- трудоемкостью СР, предусмотренной учебным планом;

- уровнем высшего образования (бакалавриат, специалитет, магистратура, аспирантура), на котором реализуется ОПОП;

- степенью подготовленности обучающихся.

Курсовая работа является самостоятельным творческим письменным научным видом деятельности студента по разработке конкретной темы. Она отражает приобретенные студентом теоретические знания и практические навыки. Курсовая работа выполняется студентом самостоятельно под руководством преподавателя.

Курсовая работа, наряду с экзаменами и зачетами, является одной из форм контроля (аттестации), позволяющей определить степень подготовленности будущего специалиста. Курсовые работы защищаются студентами по окончании изучения указанных дисциплин, определенных учебным планом.

Оформление работы должно соответствовать требованиям. Объем курсовой работы: 25–30 страниц. Список литературы и Приложения в объем работы не входят. Курсовая работа должна содержать: титульный лист, содержание, введение, основную часть, заключение, список литературы, приложение (при необходимости). Курсовая работа подлежит рецензированию руководителем курсовой работы. Рецензия является официальным документом и прикладывается к курсовой работе.

Тематика курсовых работ разрабатывается в соответствии с учебным планом. Руководитель курсовой работы лишь помогает студенту определить основные направления работы, очертить её контуры, указывает те источники, на которые следует обратить главное внимание, разъясняет, где отыскать необходимые книги.

Составленный список источников научной информации, подлежащий изучению, следует показать руководителю курсовой работы.

Курсовая работа состоит из глав и параграфов.  Вне зависимости от решаемых задач и выбранных подходов структура работы должна содержать: титульный лист, содержание, введение, основную часть; заключение; список литературы; приложение(я).

Во введении необходимо отразить:  актуальность; объект; предмет; цель;  задачи;  методы исследования;  структура работы.

Основную часть работы рекомендуется разделить на 2 главы, каждая из которых должна включать от двух до четырех параграфов.

Содержание глав и их структура зависит от темы и анализируемого материала.

Первая глава должна иметь обзорно–аналитический характер и, как правило, является теоретической.

Вторая глава по большей части раскрывает насколько это возможно предмет исследования. В ней приводятся практические данные по проблематике темы исследования.

Выводы оформляются в виде некоторого количества пронумерованных абзацев, что придает необходимую стройность изложению изученного материала. В них подводится итог проведённой работы, непосредственно выводы, вытекающие из всей работы и соответствующие выявленным проблемам, поставленным во введении задачам работы; указывается, с какими трудностями пришлось столкнуться в ходе исследования.

Правила написания и оформления курсовой работы регламентируются Положением о курсовой работе (проекте), утвержденным решением Ученого совета ФГБОУ ВО ГАГУ от 27 апреля 2017 г.